
Simulated Annealing for Hard Satisfiability Problems

William M. Spears
AI Center

Naval Research Laboratory
Washington, D.C. 20375-5320

E-mail: SPEARS@AIC.NRL.NAVY.MIL

Abstract

Satisfiability (SAT) refers to the task of finding a truth assignment that makes an
arbitrary boolean expression true. This paper compares a simulated annealing algorithm
(SASAT) with GSAT (Selman et al., 1992), a greedy algorithm for solving satisfiability
problems. GSAT can solve problem instances that are extremely difficult for traditional
satisfiability algorithms. Results suggest that SASAT scales up better as the number of
variables increases, solving at least as many hard SAT problems with less effort. The
paper then presents an ablation study that helps to explain the relative advantage of
SASAT over GSAT. Next, an improvement to the basic SASAT algorithm is examined,
based on a random walk implemented in GSAT (Selman et al., 1993). Finally, we
examine the performance of SASAT on a test suite of satisfiability problems produced by
the 1993 DIMACS challenge.

1 Introduction

Satisfiability (SAT) refers to the task of finding a truth assignment that makes an
arbitrary boolean expression true. For example, the boolean expression a & b is true if
and only if the boolean variables a and b are true. Satisfiability is of interest to the logic,
operations research, and computational complexity communities. Due to the emphasis
of the logic community, traditional satisfiability algorithms tend to be sound and
complete.1 However, Selman et al. (1992) point out that there exists a class of
satisfiability problems that are extremely hard for these algorithms. Their response has
been to create a greedy algorithm (GSAT) that is sound, yet incomplete (i.e., there is no
guarantee that GSAT will find a satisfying assignment if one exists). The advantage of

1 Soundness means that any solution found must be correct. Completeness means that a solution must be
found if one exists.

GSAT is that it can often solve problems that are extremely difficult for the traditional
algorithms.

Other recent work has also concentrated on sound but incomplete algorithms for
satisfiability (De Jong and Spears, 1989; Spears, 1990; Young and Reel, 1990; Gu,
1992). However, comparisons between the algorithms have been difficult to perform,
due to a lack of agreement on what constitutes a reasonable test set of problems. One
nice feature of the Selman et al. (1992) paper is that a class of hard problems is very
precisely defined. In this paper we compare GSAT with a novel simulated annealing
approach (SASAT) on that class of hard problems. The results suggest that SASAT
solves at least as many problems with much less effort. Next, we modify the simulated
annealing algorithm, to illustrate why SASAT outperforms GSAT. Thirdly, the paper
examines an enhancement to SASAT, based on a random walk feature described in
Selman et al. (1993). Finally, we examine the performance of SASAT on a test suite of
satisfiability problems produced by the 1993 DIMACS challenge. First, however, we
provide an overview of GSAT and introduce the simulated annealing algorithm.

2 GSAT and SASAT

GSAT assumes that the boolean expressions are in conjunctive normal form
(CNF).2 After generating a random truth assignment, it tries new assignments by flipping
the truth assignment of a boolean variable that leads to the largest δ (increase) in the
number of true clauses. GSAT is greedy because it always tries to increase the number
of true clauses. If it is unable to do this it will make a "sideways" move (i.e., change the
truth assignment of a variable although the number of true clauses remains constant).
GSAT can make a "backwards" move (decrease the number of true clauses), but only if
other moves are not available. Furthermore, it can not make two backwards moves in a
row, since the backwards move will guarantee that it is possible to increase the number
of true clauses in the next move. The algorithm for GSAT is presented in Figure 1.

Procedure GSAT;
Input: A set of clauses, MAX_FLIPS, and MAX_TRIES;
Output: A satisfying truth assignment of the clauses, if found;

for i = 1 to MAX_TRIES {
T = a random truth assignment;
for j = 1 to MAX_FLIPS {

if T satisfies the clauses then return T;

flip a variable that results in the largest δ
(increase) in the number of clauses made true;

T = the new assignment after the flip is made;
} }

Figure 1: The GSAT algorithm.

Recently, Spears (1993) showed that a Hopfield-style neural network with
simulated annealing outperforms GSAT on hard satisfiability problems. The neural
network algorithm makes no assumptions about the form of the boolean expression. By

2 CNF refers to boolean expressions that are a conjunction of clauses, each clause being a disjunction of
negated or non-negated boolean variables.

specializing to CNF expressions, the neural network can be dropped, resulting in a
simulated annealing algorithm we call SASAT. The algorithm for SASAT is presented in
Figure 2.

Procedure SASAT;
Input: A set of clauses, MAX_TRIES, MAX_TEMP, and MIN_TEMP;
Output: A satisfying truth assignment of the clauses, if found;

i = 0; tries = 0;
loop {

i++;
T = a random truth assignment; j = 0;
loop {

if T satisfies the clauses then return T;

temperature = MAX_TEMP * e−j * decay_rate ;
if (temperature < MIN_TEMP) then exit loop;

for v = 1 to the number of variables V in the clauses {
Compute the increase (decrease) δ in the number of
clauses made true if v were flipped;

flip variable v with probability defined by the

logistic function:

1 + e
−

temperature
δ___________

1______________ ;

T = the new assignment if the flip is made;
}
j++; tries++;
if (MAX_TRIES = tries) terminate algorithm;

} }

Figure 2: The SASAT algorithm.

SASAT has a control structure very similar to the control structure for GSAT. The
outermost loop variable i is analogous to the variable i in GSAT. Thus i reflects the
number of independent attempts to solve the problem. Each time i is incremented the
algorithm randomly generates a truth assignment for the boolean variables and the
temperature is set to MAX_TEMP. The inner loop, indexed by j, tries new assignments
by probabilistically flipping each boolean variable individually, based on the
improvement (δ) this flip would bring. If the improvement is positive the flip is likely to
be performed. If the improvement is negative the flip is unlikely to be performed.
SASAT differs from GSAT in that it can make arbitrary sequences of "backwards"
moves, which is a necessary feature for escaping local optima in the search space.

The probabilistic moves (flips) are determined using the standard logistic function
for simulated annealing (see Figure 2). When the temperature is high the moves are
almost random, and when the temperature is low SASAT is similar to GSAT. The inner
loop controls the annealing schedule (i.e., the rate at which the temperature drops from
MAX_TEMP to MIN_TEMP). Note that as j increases, the temperature slowly
decreases according to the decay rate in the following fashion:

temperature = MAX_TEMP * e−j * decay_rate

Once the minimum temperature is reached, i is incremented, and SASAT tries again to

solve the problem. However, a good heuristic is to reduce the decay rate before making
another attempt, in order to perform more flips during the next attempt. We used our
experience with the neural network algorithm (Spears, 1993) to set the decay rate to be:

decay_rate =
i * V

1_____

where V is the number of variables. Thus, each time i is incremented the decay rate
decreases. Also, the decay rate is dependent on the number of variables in the problem
to be solved. SASAT will use smaller decay rates on problems with more variables,
because reducing the temperature more slowly is a good heuristic for larger problems.
Finally, we used our prior experience with the neural network algorithm to set
MAX_TEMP to 0.3 and MIN_TEMP to 0.01.

Clearly these choices in parameters will entail certain tradeoffs. For a given
setting of MAX_TRIES, reducing MIN_TEMP and/or increasing MAX_TEMP will
allow more tries to be made per independent attempt, thus decreasing the number of
times that i can be incremented before the MAX_TRIES cutoff is reached. A similar
situation occurs if we decrease or increase the decay rate. Thus, by increasing the
temperature range (or decreasing the decay rate) we reduce the number of independent
attempts, but search more thoroughly during each attempt. The situation is reversed if
one decreases the temperature range (or increases the decay rate). Unfortunately it is not
at all clear whether it is generally better to make more independent attempts, or to search
more thoroughly during each attempt. Although we have made some effort to find a
reasonable balance between the number of attempts and the amount of search within an
attempt, we make no claims to optimality in this paper.

2.1 Implementation Details

As will be discussed in the Section 3, the bulk of the computation in both SASAT
and GSAT lie in performing flips and computing δs. In order to facilitate this discussion,
we now describe the data structures and algorithms used by SASAT to perform these
operations. The two most important data structures in SASAT are called the clause list
(c_list) and the variable list (v_list). Both of these are essentially two dimensional
arrays, although each row can have a different number of entries. The c_list is used to
maintain information about clauses: c_list [i] maintains information about clause i. The
first entry in c_list [i] (i.e., c_list [i][0]) is used to indicate how many of the literals are
true in the clause, for some given assignment of the boolean variables.3 The remainder of
c_list [i] has a list of variables contained in that clause. For ease of programming, a
negative entry means the variable is negated in clause i. We allow each row to have a
different number of entries to allow for boolean expressions that have clauses of differing
lengths.

The v_list is used to maintain information about variables: v_list [i] maintains
information about variable i. The first entry in v_list [i] (i.e., v_list [i][0]) is the number
of clauses that the variable i is in, while the remainder of v_list [i] has a list of the
clauses that the variable is in. Again, we use a negative entry to denote when a variable
is negated in some clause. Again, each row can have a different number of entries
because variables need not appear in the same number of clauses.

To illustrate these data structures consider the following conjunctive normal form
boolean expression (i.e., a conjunction of disjunctions) consisting of three literals per

3 A literal is a negated or non-negated boolean variable.

clause, four clauses, and four variables (x 1, x 2, x 3, and x 4):

(x 2

 or x 3

 or x 4

) & (x 1 or x 2

 or x 3

) & (x 3

 or x 1 or x 2

) & (x 4 or x 3 or x 2

)

Suppose we have not yet attempted to make an assignment to the variables. Then
the data structures would appear as in Tables 1 and 2 below. Table 1 illustrates the c_list
for the above boolean expression, while Table 2 illustrates the v_list. Due to our choice
of problem each clause happens to have the same length (again, this is not necessary),
but note that each variable does not appear in the same number of clauses. Note also that
the number of true literals for each clause (in Table 1) is 0, since we have not yet made
an assignment to the variables. Now suppose we happen to randomly initialize all four
variables to true. Then the c_list is used to compute how many true literals are in each
clause. The result is shown in Table 3.

__
Clause # of true literals variables in the clause__

clause 1 0 {-2 -3 -4}
clause 2 0 {1 -2 -3}
clause 3 0 {-3 1 -2}
clause 4 0 {4 3 -2}__

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

Table 1: The clause list (with no truth assignment)

__
Variable # of clauses variable is in clauses variable is in__

x 1 2 {2 3}
x 2 3 {-1 -2 -3 -4}
x 3 4 {-1 -2 -3 4}
x 4 3 {-1 4}__

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

Table 2: The variable list

__
Clause # of true literals variables in the clause__

clause 1 0 {-2 -3 -4}
clause 2 1 {1 -2 -3}
clause 3 1 {-3 1 -2}
clause 4 2 {4 3 -2}__

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

Table 3: Clause list (with all variables true)

Clearly we have not yet satisfied the boolean expression, since the first clause does
not have any true literals. Thus we need to consider flipping variables. Suppose we
randomly choose x 4 as a candidate for flipping. To compute the δ we use the v_list to
note that x 4 is contained in the first clause as a negated variable, and contained in the
fourth clause as a non-negated variable. Since x 4 is currently true, flipping it to false
will thus increase the number of true literals in the first clause by one, and decrease the
number of true literals by one in the fourth clause. This will make the first clause true,
since it currently does not have any true literals. However, the truth value of the fourth
clause remains unaffected, since it already has two true literals. Thus, the result of

flipping x 4 will be to increase the number of satisfied clauses from three to four (i.e.,
δ = 1). Now, if we actually perform this flip, the c_list is updated as shown in Table 4.
SASAT would now notice that all four clauses are in fact satisfied and would terminate
successfully.

__
Clause # of true literals variables in the clause__

clause 1 1 {-2 -3 -4}
clause 2 1 {1 -2 -3}
clause 3 1 {-3 1 -2}
clause 4 1 {4 3 -2}__

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

Table 4: Clause list (with x 4 false, and the rest true)

Before we close this section, a note on the computational cost of a δ calculation is
in order. If we consider the example given above we note that the factor most heavily
influencing the δ computation is the number of clauses that a variable is in. Thus, if we
fix the number of variables and increase (decrease) the number of clauses, we increase
(decrease) in a fairly linear fashion the cost of computing a δ. Similarly, if we keep the
ratio of the number of clauses to the number of variables constant, the cost of the δ
computation is largely unaffected. We will use this observation to explain some of the
results presented later in this paper.

3 Comparison, Experiments, and Results

In comparing two (or more) algorithms, one difficult choice is in the selection of
problem instances to solve. Since traditional satisfiability algorithms already work well
on many problems, it is useful to consider those problems where the traditional
algorithms run into difficulty. Furthermore, to avoid the risk of overfitting an algorithm
to a particular problem, it is important to either select a large number of problems or to
draw problems from a particular problem class (or distribution). Fortunately, classes of
problems that are difficult for traditional satisfiability algorithms have already been
identified. In this paper we will concentrate on one such class, a fixed clause-length
model referred to as Random L-SAT (Mitchell et al., 1992). The performance of GSAT
on Random L-SAT problems has already been reported in Selman et al. (1992).
Although we could not obtain the specific problems used in their experiments, we
generated random problems using their random problem generator.

Another difficult choice is in how to measure and compare the performance of the
two algorithms. Clearly, one important measure is the average amount of computation
performed by both algorithms. For example, measuring the number of flips performed
by each algorithm would be one obvious choice for comparison. However, due to the
similarity of the two algorithms, we can be even more careful in our comparison. For
both GSAT and SASAT, the bulk of the computation lies not only in the manipulation of
the data structures when a flip is made (see Figures 1 and 2), but also in the computation
of the δs. Although both a flip and the computation of each δ can be performed fairly
efficiently through the use of carefully chosen data structures, the complexity increases
with the number of clauses. Other steps in the algorithms, such as calls to a random
number generator, the check for termination, the computation of the logistic function, or
the determination of the best variable (in GSAT) are less computationally intensive.

If we are to use flips for our measure of comparison, then, we would have to feel
comfortable that both GSAT and SASAT perform roughly the same number of δ

computations per flip. Selman et al. (1992) did not report the number of δs computed by
GSAT, but they can be estimated from the reported number of flips. At first blush the
number of δs computed would appear to be the number of flips multiplied by the number
of variables V, since an obvious way to find the best variable is to compute the δ for each
variable, selecting a variable with the highest δ. However, as Selman points out
(personal communication), after each flip it is only necessary to compute the δs of those
variables that share one or more clauses with the flipped variable. Put another way, if a
variable does not share a clause with the flipped variable, nothing has changed in any
clause that variable is in, and the δ for that variable need not be recomputed.

For the purposes of illustration we will present an example of this, using the
previous boolean expression and the SASAT data structures. Suppose x 1 is false, while
x 2, x 3, and x 4 are true. Then the clause list is as shown in Table 5. Note that only the
last clause is satisfied. Let us now calculate the δ that would occur if x 1 were made true.
Note that the only effect is to satisfy the second and third clauses. Thus δx 1 is 2.
Similarly we can compute that δx 2 is 3, δx 3 is 3, and δx 4 is 1. Suppose for the sake of
illustration that we do indeed flip x 1 to true. Then the clause list appears as in Table 6.
If we recompute the δs we get δx 1 is -2, δx 2 is 1, δx 3 is 1, and δx 4 is 1. Note that δx 1 is of
course the negation of what it was earlier (since we flipped x 1). Note also that the δs for
x 2 and x 3 have changed. However, δx 4 has not changed, because it does not share any
clauses with x 1. Thus it really was unnecessary to recompute δx 4 .

__
Clause # of true literals variables in the clause__

clause 1 0 {-2 -3 -4}
clause 2 0 {1 -2 -3}
clause 3 0 {-3 1 -2}
clause 4 2 {4 3 -2}__

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

Table 5: Clause list (with x 1 false, and the rest true)

__
Clause # of true literals variables in the clause__

clause 1 0 {-2 -3 -4}
clause 2 1 {1 -2 -3}
clause 3 1 {-3 1 -2}
clause 4 2 {4 3 -2}__

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

Table 6: Clause list (with all variables true)

The random L-SAT problem generator creates random problems in conjunctive
normal form subject to three parameters: the number of variables V, the number of
clauses C, and the number of literals per clause L. Each clause is generated by selecting
L of the V variables uniformly randomly, negating each variable with probability 50%.
Let R denote the ratio of the number of clauses to the number of variables (C / V). Each
clause contains L literals, so a random problem will contain L * C = L * R * V literals.

Now suppose some variable v is in c clauses. Then this means that v and v
_

occur a
total of c times in the boolean expression, which accounts for c literals.4 If we continue

4 In this paper L will be very small compared to V. Under these conditions it is very unlikely to have the
same variable occur more than once in a clause, so we can safely ignore that possibility.

in this fashion for all variables, counting the number of clauses each variable is in, we
will account for all L * R * V literals. Thus the V variables are in a total of L * R * V
clauses. Since there are only V variables, and they are chosen uniformly, we know that a
variable occurs (on average) in L * R clauses (as a nice example of this, note how each
variable occurs in L * R = 3 clauses in Table 2). Finally, since each of the L * R clauses
contains L − 1 other literals, we can conclude that a given variable shares clauses with at
most L * R * (L − 1) other variables. This is an upper bound since the other variables
need not be unique. However, uniqueness becomes more and more likely as V increases,
and this upper bound is in fact a good estimate for the problems encountered in this
paper.5

Thus far the analysis has only been with respect to the problem generator.
However, since GSAT makes uses of the observation that it is only necessary to compute
the δs of those variables that share one or more clauses with the last flipped variable, we
can also conclude that at most L * R * (L − 1) δs are computed for every flip in GSAT.
Although GSAT was not available when this paper was written, we have recently
acquired GSAT and preliminary experiments do indeed confirm that this upper bound is
in fact a reasonable estimate.

Unfortunately, an estimate of the number of δ computations per flip in SASAT is
not available analytically, and thus the number must be determined experimentally. In
general, the number of δ computations per flip will differ from the number computed for
GSAT. Due to that fact, we consider it important to report both the number of δs
computed and the number of flips performed by GSAT and SASAT. As it turns out, for
many of the problems considered in this paper, GSAT and SASAT do in fact perform
roughly the same number of δ computations per flip. When this occurs we will find it
convenient to ignore δs and concentrate primarily on flips. However, this will not hold
on other problems, and in such cases more insight is gained by considering both δ and
flips.

It might be supposed that this whole issue could be resolved by simply
concentrating on CPU time and by measuring both the total number of flips, and the
number of flips that GSAT and SASAT make per unit of time (e.g., flips per second).
After all, the amount of work done per flip is precisely captured by a statistic measuring
the number of flips per second that each algorithm can perform (on a given problem).
This statement is true if we limit ourselves to the current implementations of GSAT and
SASAT. What is interesting, however, is that due to the similarity of the two algorithms,
GSAT can be written using the data structures of SASAT, and SASAT can be written
using the data structures of GSAT. Thus, both algorithms can be written using
essentially the same code for computing δs and for performing flips. Under these
circumstances the number of δs computed per second will be the same, and the key
difference is in how many δs are performed per flip for each algorithm. It is for this
reason that we consider it important to concentrate on both δs and flips in our general
comparison, thus de-emphasizing the particular implementations used.

To summarize, since GSAT and SASAT can be implemented using identical data
structures and the same code to compute δs and perform flips, it is important to
concentrate on both of these factors in our comparison of the two algorithms. However,
it will also be of interest to compare SASAT with other algorithms that are not at all
similar to SASAT. Under these circumstances it is much harder to make implementation
independent comparisons, and CPU time becomes the only reasonable comparison
statistic. For this reason we also report the number of flips performed by SASAT per

5 If we let N = L * R * (L − 1) the probability that the N variables are unique is
(V / V) * ((V − 1) / V) . . . ((V − N +1) / V), which approaches 1 for large V.

second and the CPU time of SASAT for all results presented in this paper.

3.1 Experiments and Results

As mentioned earlier, in this paper we will concentrate on the fixed clause-length
problems referred to as Random L-SAT problems (Mitchell et al., 1992). One interesting
feature of the Random L-SAT problems is that, when L is 3, the hardest problems (for
traditional algorithms) occur where the clause to variable ratio R is roughly 4.25.
Furthermore, when R is 4.25, roughly 50% of the random problems appear to be
satisfiable.6 Since we are generating random problems from this distribution, it is
insufficient to simply report the average number of δs and flips required to satisfy those
problems that were actually satisfied. This is because different algorithms may actually
solve a different percentage of the satisfiable problems. In order to have a more
meaningful comparison, then, it is important to report the percentage of problems
satisfied, as well as the amount of effort required to satisfy them.

Following Selman et al. (1992), we generated random 3-SAT problems ranging
from 100 to 500 variables, where R is 4.25. All results are averaged over 100 random
instances (problems) for each choice of the number of variables. We monitored the
number of δs computed and flips performed by SASAT, and estimated the number of δs
computed by GSAT, based on the results in Selman et al. (1992). Since R is 4.25,
roughly 3 * 4.25 * 2 = 25.5 δs are computed for every flip in GSAT, and we will use this
result to estimate the number of δs computed by GSAT. We also present the percentage
of problems satisfied by SASAT. The percentages of problems satisfied by GSAT are not
reported, however Selman (personal communication) states that GSAT satisfies roughly
20% - 33% of the 500 variable problems. We will assume that GSAT satisfies roughly
50% of the easier problems. The timing results for GSAT are taken from Selman et al.
(1992) and Selman and Kautz (1993a).

V C δs Flips % MAX_FLIPS Time__

100 425 541,875 21,250 ˜50% 500 .1 min___
200 850 12,673,500 497,000 NR 2,000 2.8 min___
300 1275 35,465,400 1,390,800 NR 6,000 12 min___
400 1700 89,943,600 3,527,200 NR 8,000 34 min___
500 2125 253,929,000 9,958,000 20-33% 10,000 96 min___

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

Table 7: GSAT on hard problems.7

Tables 7 and 8 present the percentage (%) of problems actually satisfied by the
algorithms. They also give the number of δs computed and flips performed, averaged
over the problems that were satisfied. Finally, we also present the average number of
independent attempts i made by SASAT before a solution was found. Given all this data,
how do we compare the two algorithms? Should we use flips, δs, or some combination
of the two? Fortunately we can finesse this decision. As mentioned before, due to clever

6 Crawford and Auton (1993) believe that a better estimate is 4.25 + (6.21 / V).
7 NR means that this datum has not been reported. MAX_TRIES is also not reported, but is at least

10(Flips / MAX_FLIPS). Selman et al. (1992) report in their table that they used 2150 clauses, yet they also
state that they use 4.25V clauses on the harder problems. We follow the 4.25V guideline.

V C δs Flips % i MAX_TRIES Time__

100 425 581,400 31,863 58/100 6.1 200,000 .2 min___
200 850 7,735,000 396,341 44/100 10.6 400,000 3 min___
300 1275 37,474,500 1,924,040 48/100 17.2 800,000 13 min___
400 1700 42,951,600 2,269,500 45/100 13.9 1,000,000 15 min___
500 2125 86,680,500 4,438,820 41/100 15.6 1,600,000 30 min___

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

Table 8: SASAT on hard problems.

design, GSAT computes roughly 25.5 δs for each flip, for this particular class of
problems. Interestingly, if we compare the ratio of δs to flips in SASAT we see a similar
pattern. For all choices of the number of variables, the ratio is roughly 20. Although not
a result of design, this rather fortuitous ratio allows us to assume that both GSAT and
SASAT do roughly the same amount of work per flip. For this reason we will
concentrate on comparing the two algorithms on the percentage of problems satisfied
and the average number of flips required to satisfy those problems.

If we examine the timing results (the last column of the table) we can also
compute the number of flips accomplished per second by SASAT. Interestingly, this
computation yields roughly 2500 flips per second, regardless of the number of variables.
This is very likely due to the fact that, as mentioned above, the δ per flip ratio is roughly
the same for all choices of the number of variables. Recall that the amount of work done
per δ computation is heavily influenced by the number of clauses that a variable is in
(see Section 2.1). Since this number is simply L * R and both L and R are fixed, the
number of δs (and flips) accomplished per second remains relatively constant as V
increases.

100 200 300 400 500

-0

5

10

Millions
of Flips

Variables

SASAT

GSAT

Figure 3: Comparison of GSAT and SASAT.

Figure 3 graphs the number of flips for both algorithms. In terms of flips, although
GSAT may have some advantage on the easier problems, SASAT appears to scale better.
A comparison of percentages is harder. The percentage of problems solved by GSAT
was not strictly monitored. Also, when the number of variables was high the results for

GSAT were averaged over only 10 satisfied problems. However, in general SASAT
appears to solve a higher percentage of problems with fewer flips.8

3.2 Distributions of Results

One of the difficulties in dealing with the above 400 and 500 variable problems is
that there are no known techniques for practically determining which of the problem
instances are in fact satisfiable. Thus, the results given above could be sensitive to the
choices of cutoffs for the algorithms. For example GSAT is run with specific choices for
the cutoff parameters MAX_TRIES and MAX_FLIPS. SASAT is run with specific
choices for the parameters MAX_TEMP, MIN_TEMP, and MAX_TRIES. With the
parameters set as given above, SASAT appears to solve a higher percentage of problems
with less work. However, it is unlikely that SASAT satisfied all the satisfiable problems.
Thus, it is conceivable that the situation could reverse if the cutoffs were increased to
such an extent that both algorithms solved more (or all) of the problems. In other words,
the remaining unsatisfied but satisfiable problems could be much more difficult for
SASAT than GSAT.

Thus, if we don’t know which problems are satisfiable, conclusions will
necessarily be tentative. An alternative would be to solve only problems with less than
300 variables, since the satisfiable problems can be determined by sound and complete
techniques. Unfortunately, our experience has shown that is also hard to draw any
conclusions about the behavior of algorithms at 500 variables from their behavior at 300
variables. In either case we would have to draw tentative conclusions.

In other words, graphs of mean performance can be misleading in those cases
where it cannot be known if all solvable problems have in fact been solved (Figure 13
later in this paper will provide a good example). Since it is impossible to completely
resolve this issue with the current state of sound and complete algorithms, the best we
can do is provide the distribution of problems actually satisfied by SASAT. This
distribution graphs the number of problems solved within a certain amount of work.
Although not a complete distribution (i.e., it is very likely to not include some satisfiable
problems), this distribution will be helpful in comparing other algorithms with SASAT in
the future. For example, although we could not use these distributions to help us
compare SASAT with GSAT (since the distributions for GSAT are not available), we will
find them very useful in comparing different versions of SASAT later in this paper.
Before providing the distributions, however, it is instructional to consider the variance of
the results given above. Table 9 provides the standard deviation of the flips for SASAT.

V C Flips Standard Dev.__

100 425 31,863 88,117______________________________________
200 850 396,341 795,558______________________________________
300 1275 1,942,040 2,911,738______________________________________
400 1700 2,269,500 3,718,480______________________________________
500 2125 4,438,820 7,970,972______________________________________

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

Table 9: Standard deviation of flips for SASAT.

8 Because we were unable to obtain the specific problems solved by GSAT, we can not assume that SASAT

solves a superset of the problems that GSAT solves, however.

In each case the standard deviation is higher than the mean, indicating the presence of
outliers in the data. In other words, we will expect that the distribution will contain a
small number of problems that are much more difficult than average. In order to confirm
this we graphed the distribution - showing the number of satisfied problems solved
within a certain number of flips. Figures 4, 5, and 6 give the distributions for the 100,
300, and 500 variable problems.

-0 10 20 30 40 50

-0

200000

400000

600000

Satisfiable problems solved

Flips

• •
• • •

•

•

Figure 4: Distribution for SASAT on 100 variable problems.

-0 10 20 30 40

-0

5e+06

1e+07

Satisfiable problems solved

Flips

• •
• • • • • • • • • • • •

• • • •
• •

•

•
•

•

•

•

•

Figure 5: Distribution for SASAT on 300 variable problems.

In Figures 4, 5, and 6 we represent the mean number of flips by a solid horizontal
line. As expected, the majority of the problems were solved with less than the mean
number of flips, and the presence of the outliers dramatically increases both the mean
and the standard deviation.

-0 10 20 30 40

-0

1e+07

2e+07

3e+07

Satisfiable problems solved

Flips

• •
• • • • • • • • • •

•

•

•

•

Figure 6: Distribution for SASAT on 500 variable problems.

One interesting use of these "solution" distributions is in deciding whether an
unsatisfied problem is satisfiable or not. If there is any reason to believe that a problem
has been drawn from a distribution similar to a Random L-SAT "problem" distribution,
and SASAT has been attempting to satisfy that problem without success, Bayesian
analysis can be used to estimate the probability that the problem is in fact unsatisfiable.
Details of this technique can be found in Spears (1992).

4 A Modification to SASAT

As stated above, comparisons of SASAT with GSAT are difficult to make. Selman
also has reported comparisons of GSAT with simulated annealing. The results have been
mixed (Selman and Kautz, 1993a; Selman et al. 1993). Given the difficulty of making a
comparison it is reasonable to wonder if SASAT is really doing better than GSAT, and if
so, why? To help answer these questions we modified SASAT to make it more similar to
GSAT. This is easily done by using a zero temperature logistic function that never
makes a backwards move (see Figure 7). Although SASAT would still not be choosing
the best variable to flip, it would nevertheless only make sideways or forwards moves, as
GSAT primarily does.

flip variable v with probability defined by the
logistic function:

if (δ < 0) return 0.0;
else if (δ == 0) return 0.5;
else return 1.0;

Figure 7. Zero temperature logistic function for SASAT.

The motivation behind this modification is the idea that backwards moves are the
primary advantage of SASAT over GSAT. If this is true, we would expect the zero

temperature SASAT to perform more like GSAT, both in terms of the percentage of
problems satisfied, and the amount of work required to satisfy them. In order to test this
hypothesis we reran the above experiments using the zero temperature SASAT. Table 10
provides the results.

V C δs Flips % i MAX_TRIES Time__

100 425 422,000 19,853 54/100 5.4 200,000 .2 min___
200 850 8,518,000 376,200 51/100 11.6 400,000 3 min___
300 1275 43,578,900 1,947,180 38/100 21.0 800,000 15 min___
400 1700 99,440,400 4,469,170 28/100 22.9 1,000,000 34 min___
500 2125 246,889,500 11,019,800 23/100 29.3 1,600,000 83 min___

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

Table 10: Zero temperature SASAT on hard problems.

100 200 300 400 500

-0

5

10

Millions
of Flips

Variables

SASAT

GSAT

0 Temp SASAT

Figure 8: Comparison of GSAT, SASAT, and zero temperature SASAT.

If we consider the ratio of δs to flips we find that the ratio is always around 22,
regardless of problem size. Zero temperature SASAT is somewhat slower than the
original SASAT, in the sense that it always performs about 2200 flips per second. This
speed reduction is due to the fact that zero temperature SASAT performs more δs per flip
than the basic SASAT (22 vs 20).

Now, let us compare zero temperature SASAT with the original SASAT (and
GSAT) on both the percentages and the number of flips (Figure 8). Tables 7 and 10
suggest that the percentages of problems satisfied by the zero temperature SASAT fall
within the values estimated for GSAT. Furthermore, Figure 8 suggests that GSAT and
zero temperature SASAT scale similarly. As expected, the zero temperature SASAT
algorithm appears to behave very much like GSAT. Figures 9, 10, and 11 compare the
distributions of the zero temperature SASAT with SASAT. The distribution of the
modified SASAT is presented as a solid line. The distributions indicate that the relative
advantage of SASAT increases as the number of variables increase.

These results highlight a number of interesting points. First, as expected, the zero
temperature SASAT performs similarly to GSAT (see Tables 7 and 10, and Figure 8).

-0 10 20 30 40 50

-0

200000

400000

600000

Satisfiable problems solved

Flips

• •
• • •

•

•

0 Temp SASAT

SASAT

Figure 9: Distribution for zero temperature SASAT on 100 variable problems.

-0 10 20 30 40

-0

5e+06

1e+07

Satisfiable problems solved

Flips

• •
• • • • • • • • • • • •

• • • •
• •

•

•
•

•

•

•

•

0 Temp SASAT

SASAT

Figure 10: Distribution for zero temperature SASAT on 300 variable problems.

Second, since SASAT outperforms zero temperature SASAT, we increase our confidence
in our conclusion that SASAT does indeed outperform GSAT on this class of problems,
at least with the given cutoffs. 9 Third, we have evidence to confirm that the key to the
relative advantage of SASAT lies in the backwards moves (which allow SASAT to
escape suboptima), since SASAT outperforms zero temperature SASAT (and GSAT)
both in the percentage of problems satisfied and the number of flips required to satisfy
them.

9 All versions of SASAT described in this paper use the same cutoffs.

-0 10 20 30 40

-0

1e+07

2e+07

3e+07

Satisfiable problems solved

Flips

• •
• • • • • • • • • •

•

•

•

•

0 Temp SASAT

SASAT

Figure 11: Distribution for zero temperature SASAT on 500 variable problems.

Despite the modification to SASAT, GSAT remains different in an important
aspect. Unlike SASAT, GSAT always flips the best variable of the V variables than can
be flipped at any time. In other words GSAT bases its decisions on the global
information obtained from all variables. SASAT, on the other hand, bases its decisions
only on the local information associated with one variable. Interestingly, it is not clear
that the global mechanism is very useful, since zero temperature SASAT (which also
uses local information) performs in a fashion that is very similar to GSAT. This raises an
intriguing question. Is choosing the best really a good strategy? We plan to pursue this
in more detail in the future.

As mentioned earlier, Selman has reported mixed results with simulated annealing.
Their method is sufficiently different to make strong conclusions difficult (e.g., they
always accept forward and sideways moves); however, it appears as if the annealing
schedule we use can help explain some of those results. In Selman’s experiments
relatively high maximum temperatures were used - namely, 5 or 10. SASAT has a
maximum temperature of 0.3. It is likely that temperatures much higher than 0.3 simply
result in a lot of wasted search.

Finally, although it is clear that backwards moves help the performance of SASAT,
it remains an open issue whether the success is due to the annealing schedule per se, or
whether some simpler method of applying backwards moves would yield comparable
performance (i.e., applying backwards moves with some fixed probability). As we shall
see, the next section suggests that backwards moves applied according to a simple
heuristic can also augment performance.

5 SASAT with a Random Walk

As mentioned earlier, one characteristic of SASAT is that it allows arbitrary
sequences of backwards moves. Recently, GSAT has been enhanced by a feature
referred to as a random walk (Selman et al., 1993). The purpose of the walk is to allow
GSAT to escape from local optima by making backwards moves. However, the random
walk moves are more purposeful than those made by SASAT. Periodically, GSAT

randomly chooses an unsatisfied clause, and flips the value of a random literal within
that clause (thus making that clause true). Preliminary results indicate that this is an
effective heuristic for GSAT.

Considering the relative advantages that SASAT appears to have, it is reasonable
to also consider adding a similar heuristic to SASAT. One elegant way is to modify the
logistic function as shown in Figure 12.

flip variable v with probability defined by the
logistic function:

with probability p {
if (v is in an unsatisfied clause) return 1.0;
else return 0.0;

}
else with probability 1 − p {

return

1 + e
−

temperature
δ___________

1______________ ;

}

Figure 12. Random walk logistic function for SASAT.

Thus, with probability p we check to see if a variable is in an unsatisfied clause. If
it is we flip it. If not, we leave it alone. Finally, with probability 1 − p we use the
standard logistic function. The motivation is to add backwards moves to SASAT that are
not simply random. In fact, random walk moves are targeted towards those clauses that
appear to be giving the algorithm difficulty.

Of course, the behavior of this algorithm depends greatly on the value chosen for
p. Results from the genetic algorithm community suggest that such perturbations should
occur roughly once for each pass over the V variables (Baeck, 1993). Drawing on these
results, and some preliminary empirical experiments, we set p to 1 / V and reran SASAT.
Table 11 presents the results.

__
V C δs Flips % i MAX_TRIES Time__

100 425 102,900 8,072 55/100 2.8 200,000 .05 min__
200 850 1,833,400 125,239 56/100 5.0 400,000 .8 min__
300 1275 19,202,100 1,236,040 53/100 11.7 800,000 8 min__
400 1700 34,179,200 2,128,179 46/100 11.7 1,000,000 13 min__
500 2125 99,556,000 6,016,920 46/100 15.9 1,600,000 37 min__

Table 11: SASAT with random walk on hard problems.

If we consider the ratio of δs to flips we find that the ratio is around 16. This is
because the random walk results in more flips than the original SASAT, reducing the
number of δs computed per flip. As a result, SASAT with random walk also performs
more flips per second, roughly 2700.

Again let us also compare the algorithms on the percentages of problems solved
(see Tables 8 and 11), and the number of flips required to solve them (Figure 13).
SASAT with the random walk solves a higher percentage of problems than it did before,
achieving almost 50% on the harder problems. In terms of the average number of flips, it

100 200 300 400 500

-0

5

10

Millions
of Flips

Variables

SASAT

GSAT SASAT
with walk

Figure 13: Comparison of GSAT, SASAT, and SASAT with random walk.

-0 10 20 30 40 50

-0

200000

400000

600000

Satisfiable problems solved

Flips

• •
• • •

•

•

SASAT
with walk

SASAT

Figure 14: Distribution for SASAT with walk on 100 variable problems.

does not appear to scale as well as SASAT. However, this is somewhat misleading, since
SASAT with the random walk is solving more problems. Figures 14, 15, and 16 compare
the distributions of SASAT with the random walk against SASAT. The distribution for
SASAT with the random walk is presented as a solid line. Note that, with the possible
exception at 100 variables, SASAT with the random walk appears to be a definite
improvement over the basic SASAT algorithm.

This section indicates that backwards moves applied according to a simple
heuristic can also augment performance in SASAT. What is not clear is whether the
performance is due to the random walk, the annealing schedule, or some combination of
the two. One obvious control study would be to rerun the zero temperature SASAT with
random walk. We intend to pursue this in the near future.

-0 10 20 30 40 50

-0

5e+06

1e+07

Satisfiable problems solved

Flips

• •
• • • • • • • • • • • •

• • • •
• •

•

•
•

•

•

•

•

SASAT with walk

SASAT

Figure 15: Distribution for SASAT with walk on 300 variable problems.

-0 10 20 30 40

-0

1e+07

2e+07

3e+07

Satisfiable problems solved

Flips

• •
• • • • • • • • • •

•

•

•

•

SASAT with walk

SASAT

Figure 16: Distribution for SASAT with walk on 500 variable problems.

6 Scaling Issues and Harder Problems

As stated earlier, one important issue is in how to compare the performance of
various algorithms. For Random 3-SAT problems where R is 4.25, GSAT computes
roughly 25 δs per flip. Fortuitously SASAT without random walk computes roughly 20
δs per flip. Given the current implementations of SASAT and GSAT, and the problem
class explored, flips appears to be a good measure for comparison.

However, suppose we consider Random L-SAT problems where L is greater than
3. Should we still compare GSAT and SASAT using flips? Recall that when L is 3 and R
is 4.25, roughly 50% of the random problems are satisfiable. To maintain the 50%
proportion, R must increase when L increases, which greatly increases the ratio of δs to

flips in GSAT. Table 12 gives the values of R where roughly 50% of random problems
appear to be satisfiable (Selman - personal communication), and compares the ratio of δs
to flips for both algorithms. The results for GSAT are obtained using the previously
derived expression L * R * (L − 1) , while the results for SASAT are determined
experimentally for V equal to 500.10 It is clear that in terms of the amount of δs
computed per flip performed, SASAT scales better as L increases. It is also clear that
flips is not a good measure for comparison as L increases, and that both δs and flips
should be reported when L is greater than 3.

L R GSAT δ/flip SASAT δ/flip SASAT flips/sec__
3 4.25 25.5 22 2500___
4 9.7 116 38 590___
5 21.0 420 93 82___
6 43.5 1,305 163 21___

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

Table 12: Comparison of the δ/flip ratio as L increases.

On a related note, the efficient performance of GSAT is due to the fact that it is
only necessary to compute the δs of those variables that share one or more clauses with
the last flipped variable. It is also possible to make a similar improvement to SASAT,
thus reducing the number of δs computed per flip in SASAT (see the example using
Tables 5 and 6 earlier in this paper). Note that, as with GSAT, this will not change the
semantics of the algorithm. Experiments with SASAT on Random L-SAT problems
indicate that although this is not a clear win for larger L, it does dramatically reduce the
number of δ computations per flip (and increase the number of flips per second) when
L = 3 (see Table 13).11

__
L R SASAT δ/flip Improved SASAT δ/flip Improved flips/sec__
3 4.25 22 11 3000__
4 9.7 38 35 573__
5 21.0 93 82 87__
6 43.5 163 152 27__

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

Table 13: Comparison of the δ/flip ratio as L increases.

A second important issue is the selection of problem instances to be solved. To avoid
overfitting an algorithm to particular problems, it is important to consider large sets of
problems or to consider random problems drawn from distributions. In this paper we
have concentrated on a set of hard problems drawn from the Random 3-SAT distribution,
ranging from 100 to 500 variables. Due to time constraints, it is difficult to produce
distributions for problems with more variables. However, we can still consider harder
individual instances. GSAT has solved Random 3-SAT problems of 600, 1000, and 2000
variables. Table 14 presents the results for SASAT on these problem instances.12

10 Again, preliminary experiments with GSAT indicate this is a reasonable estimate.
11 The SASAT implementations used in Sections 3, 4, and 5 did not use this modification. However, we use

it for the remainder of the paper.
12 The notation 1.8E5 means 1.8 * 105 . Also, due to time constraints, for these experiments and all

remaining experiments, SASAT is run once for each problem. The results for GSAT are not available.

Problem V C δs Flips i MAX_TRIES Time__

f600 600 2,550 1.8E5 15,603 1 20,000,000 .1 min___
f1000 1,000 4,250 1.8E9 1.5E8 59 20,000,000 833 min___
f2000 2,000 8,500 9.1E8 8.1E7 20 20,000,000 450 min___

Table 14: SASAT on harder Random L-SAT problems

It could be argued that the Random L-SAT problems are not of interest, since they
may not occur in realistic problems. To address this criticism, GSAT has also been used
to solve larger instances, based on problems from other communities. The largest
instances are based on hard graph problems. Table 15 presents the results for SASAT on
these larger problems. Surprisingly, SASAT solves all four, two of them quite easily.

__
Problem V C δs Flips i MAX_TRIES Time__
g125.17 2,125 66,272 1.7E9 3.4E7 45 20,000,000 7563 min__
g125.18 2,250 70,163 2.1E6 43,007 1 20,000,000 8 min__
g250.15 3,570 233,965 3.4E5 6,193 1 20,000,000 2 min__
g250.29 7,250 454,622 5.4E8 5.7E6 7 20,000,000 6667 min__

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

Table 15: SASAT on very large problems.

As stated earlier, one motivation for the Random L-SAT problems is that they are
difficult for traditional complete algorithms. Likewise, although the graph problems in
Table 15 do not appear to be hard for incomplete algorithms such as GSAT and SASAT,
their sheer size also makes them difficult for complete algorithms, in the sense that the
search space is too large for systematic exploration.13 Not surprisingly, these results
indicate that one potential problem class well suited to incomplete algorithms are
precisely those problems that are too large for complete algorithms.

One task of the 1993 DIMACS challenge was to produce a test suite of
satisfiability problems that hopefully could be useful in determining the important biases
of various satisfiability algorithms, indicating the classes of problems that are well (and
poorly) matched to each algorithm. Particular instances of Random 3-SAT problems and
the above graph instances are included in this test suite. Also included are instances
derived from parity, inductive inference, and coloring problems. The complete test suite
is composed of 41 instances, 27 of which are satisfiable. Due to the size of some of these
instances, we were only able to run SASAT once on each satisfiable instance. No
attempt was made to optimize the parameter settings of SASAT. MAX_TEMP and
MIN_TEMP were kept at 0.3 and 0.01 respectively, while MAX_TRIES was set at
20,000,000. The results are presented in Appendix 1. CPU time is also included with
these results, because it is hard to compare SASAT with other satisfiability algorithms in
terms of δs and flips (see also Appendix 2, which benchmarks the speed of the machine
used). However, it should be noted that SASAT is not implemented as efficiently as
possible (e.g., it appears as if we would gain a sizeable performance improvement using
GSAT’s data structures), and the reader should concentrate more on qualitative trends
rather than on specific values.

13 The basic GSAT algorithm was faster than SASAT on the 2250 and 3570 variable problems, but was
unable to solve the 2125 and 7250 variable problems (Selman and Kautz, 1993b).

Of the 27 satisfiable problems, 15 were solved by SASAT. SASAT performed well
on the graph ("g") and inductive inference ("ii") instances, solving each one. The "ssa"
and "parity" instances were much more difficult - SASAT solved only the simplest parity
instances. Perhaps the biggest surprise was the difficulty of the "aim" instances - SASAT
was only able to solve 2 of the 4 satisfiable instances.14

Unfortunately, what is not clear is why SASAT is having trouble on the "ssa,"
"parity," and "aim" problems. However, two intriguing observations can be made. First,
SASAT is having trouble on problems where the clause to variable ratio is 4 or less. We
should not draw the conclusion that any instance with a clause to variable ratio of less
than 4 is difficult for SASAT, because this is not true of Random 3-SAT instances.
However, perhaps hard instances are often more difficult for SASAT when the clause to
variable ratio is low. Second, an analysis of the ratio of δs to flips also shows an
interesting trend. Generally, SASAT has difficulty in solving instances when this ratio is
low as well. The explanation for both of these observations remains unclear and is an
interesting item for future work.

7 Summary and Future Work

In this paper we consider an application of simulated annealing (SASAT) to a class
of hard problems and compare the resulting algorithm with a greedy algorithm (GSAT).
With the given cutoffs, SASAT appears to satisfy at least as many hard SAT problems as
GSAT, with less work. We then present evidence confirming that the relative advantage
of SASAT lies in its use of random backward moves, which help avoid local optima. By
adding a random walk heuristic, SASAT is shown to solve even more problems. Finally,
SASAT is run on a test suite of instances. The results indicate that SASAT’s forte may
be problems that are too large for systematic exploration by complete algorithms (e.g.,
see Table 15).

There are a number of potential items for future work. SASAT uses a very simple
annealing schedule, which is not optimized. Recent work in adaptive annealing
schedules holds the promise of improved performance. Secondly, it should be possible
to add domain-dependent operators to SASAT. For example, it may be possible to add
stochastic operators based on the Davis-Putnam satisfiability algorithm. Thirdly, SASAT
is intrinsically parallel and is a good match for parallel architectures. Currently, Andrew
Sohn of the New Jersey Institute of Technology is porting SASAT to a AP1000
multiprocessor. Fourth, the neural network version of SASAT (Spears, 1990; Spears
1993) is even more inherently parallel (since each neuron can be placed on an individual
processor), and is a good match for a SIMD (Single Instruction Multiple Data) machine.
Given that the neural network algorithm also makes no assumptions about the form of
the boolean expression, we feel that this algorithm is very promising. Finally, there
remains an open question as to precisely why certain satisfiability instances are hard or
easy for incomplete algorithms such as SASAT. We intend to explore this question in the
near future.

Acknowledgements
Thanks to Diana Gordon and Ken De Jong for many helpful comments on this

work and this paper. Diana was also highly influential in my efforts to find a fair
comparison between GSAT and SASAT. I would also like to thank David Johnson, Bart

14 SASAT with random walk solved all the "aim" instances, and another of the "ssa" instances, so it is clear
that improvements are possible. However, we do not discuss these results in this paper.

Selman, Ian Gent, Toby Walsh, Antje Beringer, and John Grefenstette for provocative
and insightful comments. Finally, I thank Andrew Sohn for expressing an interest in
parallelizing SASAT. Any remaining errors are of course the author’s responsibility.

References

Baeck, Thomas (1993) Optimal Mutation Rates in Genetic Search, International
Conference on Genetic Algorithms, University of Illinois, Urbana - Champaign, June
1993, pgs. 2 - 8.

Crawford, J. M. & L. D. Auton (1993) Experimental Results on the Crossover Point in
Satisfiability Problems, Proceedings of the 1993 AAAI Conference, Washington, DC,
pgs. 21 - 27.

De Jong, K.A. & W. Spears (1989) Using Genetic Algorithms to Solve NP-Complete
Problems, International Conference on Genetic Algorithms, George Mason University,
Fairfax, Virginia, June 1989, pgs. 124 - 132.

Gu, J. (1992) Efficient Local Search for Very Large-Scale Satisfiability Problems,
SIGART Bulletin, 3(1), January 1992.

Mitchell, D., Selman, B., & H. Levesque (1992) Hard and Easy Distributions of SAT
Problems, Proceedings of the 1992 AAAI Conference, San Jose, CA, pgs 459 - 465.

Selman, B., Kautz, H. A., & B. Cohen (1993) Local Search Strategies for Satisfiability
Testing, paper in preparation for the 2nd DIMACS Challenge, Rutgers University.

Selman, B., & H. A. Kautz (1993a) Domain-Independent Extensions to GSAT: Solving
Large Structured Satisfiability Problems, Proceedings of IJCAI-93.

Selman, B., & H. A. Kautz (1993b) An Empirical Study of Greedy Local Search for
Satisfiability Testing, Proceedings of the 1993 AAAI Conference, Washington, DC, pgs
46 - 51.

Selman, B., Levesque, H., & D. Mitchell (1992) A New Method for Solving Hard
Satisfiability Problems, Proceedings of the 1992 AAAI Conference, San Jose, CA, pgs
440 - 446.

Spears, W. M. (1993) A NN Algorithm for Hard Satisfiability problems, Artificial
Intelligence Center Internal Report #AIC-93-014, Naval Research Laboratory,
Washington, DC 20375.

Spears, W. M. (1992) Probabilistic Satisfiability, Artificial Intelligence Center Internal
Report #AIC-92-026, Naval Research Laboratory, Washington, DC 20375.

Spears, W. M. (1990) Using Neural Networks and Genetic Algorithms as Heuristics for
NP-Complete Problems, Masters Thesis, Department of Computer Science, George
Mason University, Fairfax, Virginia.

Young, R. A. & A. Reel (1990) A Hybrid Genetic Algorithm for a Logic Problem",
Proceedings of the 9th European Conference on Artificial Intelligence, pp.744-746,
Editor: Aiello, L.C. Publisher: Pitman, London, UK.

Appendix 1

__
Name Sat? V Clauses Runs(Fail) δs Flips Time__
aim-100-2_0-no-1 No 0
aim-100-2_0-no-2 No 0
aim-100-2_0-no-3 No 0
aim-100-2_0-no-4 No 0
aim-100-2_0-yes1-1 Yes 100 200 1(1) *
aim-100-2_0-yes1-2 Yes 100 200 1(0) 5.6E8 9.6E7 232 min
aim-100-2_0-yes1-3 Yes 100 200 1(0) 8.4E8 1.5E8 375 min
aim-100-2_0-yes1-4 Yes 100 200 1(1) *
bf0432-007.cnf No 0
bf2760-001.cnf No 0
dubois20.cnf No 0
dubois21.cnf No 0
f400.cnf Yes 400 1700 1(0) 2.1E6 1.9E5 1 min
f800.cnf Yes 800 3400 1(0) 7.4E8 6.4E7 450 min
f1600.cnf Yes 1600 6800 1(1)
f3200.cnf Yes 3200 13600 1(1)
f6400.cnf Yes 6400 27136 1(1)
g125.17.cnf Yes 2125 66272 1(0) 1.7E9 3.4E7 7563 min
g125.18.cnf Yes 2250 70163 1(0) 2.1E6 43007 8 min
g250.15.cnf Yes 3750 233965 1(0) 3.4E5 6193 2 min
g250.29.cnf Yes 7250 454622 1(0) 5.4E8 5.7E6 6667 min
ii32b3.cnf Yes 348 5734 1(0) 1.4E7 2.2E6 90 min
ii32c3.cnf Yes 279 3272 1(0) 4.1E7 7.5E6 203 min
ii32d3.cnf Yes 824 19478 1(0) 3.8E6 4.6E5 20 min
ii32e3.cnf Yes 330 5020 1(0) 1.3E7 2.0E6 65 min
par16-2-c.cnf Yes 349 1392 1(1)
par16-4-c.cnf Yes 324 1292 1(1)
par32-2-c.cnf Yes 1303 5206 1(1)
par32-4-c.cnf Yes 1333 5326 1(1)
par8-2-c.cnf Yes 68 270 1(0) 15228 3294 .02 min
par8-4-c.cnf Yes 67 266 1(0) 1.7E5 44307 .2 min
pret150_25.cnf No 0
pret150_75.cnf No 0
pret60_25.cnf No 0
pret60_75.cnf No 0
ssa0432-003.cnf No 0
ssa2670-141.cnf No 0
ssa7552-038.cnf Yes 1501 3575 1(1) *
ssa7552-158.cnf Yes 1363 3034 1(1)
ssa7552-159.cnf Yes 1363 3032 1(1)
ssa7552-160.cnf Yes 1391 3126 1(0) 1.4E9 3.4E8 2925 min

__
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

* = However, SASAT with random walk has solved this problem.

Table 16: SASAT on the DIMACS test suite.

Appendix 2

Type of machine: Sun Sparc 10

Compiler and Flags used: cc -O4

r100.5 r200.5 r300.5 r400.5 r500.5__

0.05 1.42 12.41 76.99 298.70___
��
�

��
�

��
�

��
�

��
�

��
�

Table 17: User time results

